Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the Northern Great Plains, cattle may be exposed to water with elevated sulfate concentrations resulting in ruminal hydrogen sulfide (H2S) production and risk of copper deficiency. There are currently few strategies available to help mitigate effects arising from high sulfate water. The objective of this study was to evaluate the effects of feeding a moderate forage diet with or without bismuth subsalicylate (BSS; 0.0 vs. 0.4% DM basis) when provided water with a low (LS; 346 ± 13) or high (HS; 4,778 ± 263 mg/L) sulfate concentration on feed and water intake, ruminal H2S concentration, and liver and serum trace mineral concentrations. Twenty-four Limousin × Simmental cross beef heifers (221 ± 41 kg) were stratified based on initial liver Cu into a completely randomized block design with a 2 × 2 factorial treatment arrangement. Feed and water intake (measured weekly), ruminal H2S concentration (measured on d 42 and 91), and liver (measured on d -13 and d 91) and serum trace mineral concentrations (measured on d 1, 28, 56, and 91) were evaluated. Initial liver trace-mineral concentrations were used as a covariate in the statistical model. Water intake tended to be reduced with the inclusion of BSS (P = 0.095) but was not affected by water sulfate (P = 0.40). Water sulfate and BSS did not affect DMI (P ≥ 0.89). Heifers consuming HS had ruminal H2S concentration that was 1.58 mg/L more (P < 0.001) than LS. The inclusion of BSS reduced (P = 0.035) ruminal H2S concentration by 46% (2.3 vs. 1.4 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration (average of 4.08 mg/kg) than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS (42.2 vs. 58.3; sulfate × BSS, P = 0.019). The serum concentration of Cu did not differ over time for heifers not provided BSS; whereas, heifers provided BSS had lesser serum Cu concentration on d 91 than d 28 and 55 (BSS × time, P < 0.001). The liver concentration of selenium was reduced (P < 0.001) with BSS inclusion but the selenium concentration in serum was not affected by sulfate, BSS, or time (P ≥ 0.16). Bismuth subsalicylate reduced ruminal H2S concentration, but depleted liver Cu and Se. Moreover, sulfate concentration in water did not appear to affect DMI, water intake, or growth, but increased ruminal H2S and reduced liver Cu concentration.
In the Northern Great Plains, cattle may be exposed to water with elevated sulfate concentrations resulting in ruminal hydrogen sulfide (H2S) production and risk of copper deficiency. There are currently few strategies available to help mitigate effects arising from high sulfate water. The objective of this study was to evaluate the effects of feeding a moderate forage diet with or without bismuth subsalicylate (BSS; 0.0 vs. 0.4% DM basis) when provided water with a low (LS; 346 ± 13) or high (HS; 4,778 ± 263 mg/L) sulfate concentration on feed and water intake, ruminal H2S concentration, and liver and serum trace mineral concentrations. Twenty-four Limousin × Simmental cross beef heifers (221 ± 41 kg) were stratified based on initial liver Cu into a completely randomized block design with a 2 × 2 factorial treatment arrangement. Feed and water intake (measured weekly), ruminal H2S concentration (measured on d 42 and 91), and liver (measured on d -13 and d 91) and serum trace mineral concentrations (measured on d 1, 28, 56, and 91) were evaluated. Initial liver trace-mineral concentrations were used as a covariate in the statistical model. Water intake tended to be reduced with the inclusion of BSS (P = 0.095) but was not affected by water sulfate (P = 0.40). Water sulfate and BSS did not affect DMI (P ≥ 0.89). Heifers consuming HS had ruminal H2S concentration that was 1.58 mg/L more (P < 0.001) than LS. The inclusion of BSS reduced (P = 0.035) ruminal H2S concentration by 46% (2.3 vs. 1.4 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration (average of 4.08 mg/kg) than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS (42.2 vs. 58.3; sulfate × BSS, P = 0.019). The serum concentration of Cu did not differ over time for heifers not provided BSS; whereas, heifers provided BSS had lesser serum Cu concentration on d 91 than d 28 and 55 (BSS × time, P < 0.001). The liver concentration of selenium was reduced (P < 0.001) with BSS inclusion but the selenium concentration in serum was not affected by sulfate, BSS, or time (P ≥ 0.16). Bismuth subsalicylate reduced ruminal H2S concentration, but depleted liver Cu and Se. Moreover, sulfate concentration in water did not appear to affect DMI, water intake, or growth, but increased ruminal H2S and reduced liver Cu concentration.
The objectives of this study were to evaluate the levels of supplemental salt on low-quality forage intake, water intake, dry matter digestibility, and rumen fermentation. Six ruminally cannulated, Angus crossbred heifers (14 mo of age; 449 kg ± 24 kg BW) were used in a dual 3 × 3 Latin square design. The heifers were housed in individual stalls with two animals assigned to each treatment per period. Salt treatments were mixed into a protein supplement of 50% cracked corn and 50% soybean meal and fed at 0.3% of shrunk BW. Salt treatments consisted of: 1) control, no salt (CON), 2) 0.05% of BW salt (LOW), and 3) 0.1% of BW salt (HIGH). Chopped, low-quality (CP = 7.4%; NDF = 64.2%), grass hay was used as the base ration and was provided daily at 120% of the average daily intake of the previous 3 days. Each period included a 14-day diet adaptation, 6 days of sample collection, 1 day collection of rumen fluid samples for ruminal and microbial profiles. Individual forage dry matter intake, water intake, and dry matter digestibility were measured during the 6-day collection period. Rumen pH, ammonia levels, and VFA concentrations were measured during the 1-day ruminal profile. Rumen DM and liquid fill were determined with a 5-hour post feeding rumen evacuation. Supplemental salt had no influence on forage intake (P = 0.19) expressed on a kg/day basis yet tended to decrease linearly (P = 0.06) with increasing levels of salt when expressed on a grams/kg body weight basis. Dry matter digestibility was not influenced by salt levels (P > 0.05), but DM fill tended to increase linearly with increasing salt levels (P = 0.06). Water intake and liquid fill, however, increased linearly with increasing level of salt (P < 0.01) with an 18.9% increase in water intake and 17.0% increase in liquid fill compared to control animals. Ruminal pH and ammonia levels both decreased linearly with increasing salt (P < 0.01). Acetate concentration and acetate: propionate ratio increased linearly with increasing levels of salt (P < 0.01). In contrast, isobutyrate and butyrate concentrations decreased linearly with increasing levels of salt (P < 0.01). Our research suggests that increasing levels of salt tends to influence dry matter intake, DM fill, liquid kinetics, and rumen fermentation characteristics. Results from this research provides additional information on how salt-limited supplements may impact beef cattle consuming low-quality forage diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.