A numerical investigation is performed into the effects of the root mean square (RMS) turbulence velocity on the spray characteristics of liquid fuel injected into a constant volume vessel and comparison drawn with experimental data obtained for the case of iso-octane fuel injected into nitrogen showing good agreement between the two. A detailed parametric study is undertaken, enabling the effect of ambient turbulence on key spray characteristics to be determined. The numerical solutions obtained reveal how an increased level of turbulence in the gas into which fuel is injected leads to reductions in the axial fuel penetration and the Sauter mean droplet diameter, together with increases in radial vapour penetration and the number of fuel droplets formed.