One of the main catalysts used in the reforming of methanol with water vapor to produce hydrogen is Cu/ZnO/Al2O3 due to their high activity and selectivity. With the data from a fixedbed reactor with a central thermocouple, which operated for 700 hours with a constant pressure of 1.93 atm, feed rate 1.5 H2O/CH3OH, with temperature measurements performed periodically in 17 axial axis positions. This project studied two kinetic models for this reaction and as well the deactivation of this catalyst. In the first model, it assumed the reaction is first order irreversible, while the second model, beyond first order kinetics, plus the reaction reverse water gas-shift, as a consecutive reaction. For this, the reactor was modeled mathematically considering the equations of molar balance and energy. The resulting system of differential equations was solved in Matlab® and the heat transfer coefficient and the pre-exponential constants were adjusted, assuming total activity of the catalyst in the instant of time equal to zero. For the other 9 instants of time, the global heat transfer coefficient was kept constant, optimizing only the pre-exponential constant. The results showed a good prediction of both models about the experimental data, mainly in relation to the temperature profiles. Model 2, which considered the formation of carbon monoxide, adjusted to the experimental molar flow profiles. The catalytic activity was determined for the reactor with its total length and 16 fixed bed reactors in series, in 10 different periods. To assess deactivation, models from the literature were used that consider sintering and deposition of coke or carbon, in both cases the adjustments were satisfactory