In this paper, three types of impedance spectra were investigated, i.e., impedance spectra of two zinc powders (new and old) and five coatings (two different thicknesses of epoxy zinc-rich coatings (EZRCs), an ethyl silicate zinc-rich coating, an epoxy coating and an autodeposition coating) in 3.5 wt.% NaCl solution, dry film impedance spectra of two coatings (the thicker EZRC and autodeposition coating) and their impedance spectra in a 0.003 M LiCl–methanol solution. The results show that the resistive part of the high-frequency impedance of the ZRCs at the early stage of immersion is the contact resistance ( Rm) between the zinc powders, and the capacitive part is the parallel connection of the contact capacitance ( Cm) and the film capacitance ( Cc) of the binder. The coupling of the two capacitors results in a deviation of the measured Pm from the true Pm, where Pm is the Cm-dependent dispersion coefficient