This paper deals with an inverse scattering problem under a linearized scattering model for a multi-static/multi-frequency configuration. The focus is on the determination of a sampling strategy that allows the reduction of the number of measurement points and frequencies and at the same time keeping the same achievable performance in the reconstructions as for full data acquisition. For the sake of simplicity, a 2D scalar geometry is addressed, and the scattered far-field data are collected. The relevant scattering operator exhibits a singular value spectrum that abruptly decays (i.e., a step-like behavior) beyond a certain index, which identifies the so-called number of degrees of freedom (NDF) of the problem. Accordingly, the sampling strategy is derived by looking for a discrete finite set of data points for which the arising semi-discrete scattering operator approximation can reproduce the most significant part of the singular spectrum, i.e., the singular values preceding the abrupt decay. To this end, the observation variables are suitably transformed so that Fourier-based arguments can be used. The arising sampling grid returns several data that is close to the NDF. Unfortunately, the resulting data points (in the angle-frequency domain) leading to a complicated measurement configuration which requires collecting the data at different spatial positions for each different frequency. To simplify the measurement configuration, a suboptimal sampling strategy is then proposed which, by an iterative procedure, enforces the sampling points to belong to a rectangular grid in the angle-frequency domain. As a result of this procedure, the overall data points (i.e., the couples angle-frequency) actually increase but the number of different angles and frequencies reduce and lead to a measurement configuration that is more practical to implement. A few numerical examples are included to check the proposed sampling scheme.