2016 International Conference on ICT for Smart Society (ICISS) 2016
DOI: 10.1109/ictss.2016.7792848
|View full text |Cite
|
Sign up to set email alerts
|

Information extraction for traffic congestion in social network: Case study: Bekasi city

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(7 citation statements)
references
References 7 publications
0
6
0
1
Order By: Relevance
“…Bi-LSTM-CNN mengkombinasikan Bidirectional Recurrent Neural Network dengan LSTM untuk mentransformasikan kata sesuai karakteristiknya menjadi sebuah entitas nama secara dua arah menggunakan jaringan LSTM maju dan jaringan LSTM mundur, serta CNN yang mampu memodelkan informasi hingga level karakter suatu kata (Chiu & Nichols, 2016). Atribut-atribut berita yang diperlukan diambil sebagai informasi menggunakan pendekatan rule-based (Alifi & Supangkat, 2016). Selain itu, digunakan fitur tambahan berupa Part-of-speech (POS) Tagging untuk meningkatkan performa model NER (Rifani et al, 2019).…”
Section: Data Dan Sumber Dataunclassified
“…Bi-LSTM-CNN mengkombinasikan Bidirectional Recurrent Neural Network dengan LSTM untuk mentransformasikan kata sesuai karakteristiknya menjadi sebuah entitas nama secara dua arah menggunakan jaringan LSTM maju dan jaringan LSTM mundur, serta CNN yang mampu memodelkan informasi hingga level karakter suatu kata (Chiu & Nichols, 2016). Atribut-atribut berita yang diperlukan diambil sebagai informasi menggunakan pendekatan rule-based (Alifi & Supangkat, 2016). Selain itu, digunakan fitur tambahan berupa Part-of-speech (POS) Tagging untuk meningkatkan performa model NER (Rifani et al, 2019).…”
Section: Data Dan Sumber Dataunclassified
“…As the global urban population is projected to surge to 66 % or 70 % by 2050 (O'Dwyer et al, 2019), there are escalating concerns about the environmental, managerial, and security impacts. In response to this challenge, smart cities which heavily rely on information and communication technologies (ICTs) have been proposed and realised in various nations (Aguilera et al, 2017;Alifi & Supangkat, 2016;Al_Turjman & Baali, 2022;Galindo, 2014;Yamakami, 2017;Szpilko et al, 2020). Smart cities integrate different technologies, such as the Internet of Things, blockchain, artificial intelligence, machine learning (ML), and deep reinforcement learning (DRL), to provide comprehensive solutions (Alam et al, 2017;Ali et al, 2020;Allam & Dhunny, 2019;Liu et al, 2019;Bilan et al, 2022).…”
Section: Literature Reviewmentioning
confidence: 99%
“…2) Machine learning (ML) a) Supervised and Unsupervised ML: Researchers in [12] and [13] used the SVM algorithm to classify tweets as relevant and irrelevant to traffic. But they don't detect event types.…”
Section: A Event Detection Techniquesmentioning
confidence: 99%
“…By Keywords [8], [16], [18], [19], [41], [22], [30], By accounts [9], [10], [14], [15], [17] By Geo-coordinates [2], [25], [42] Using Machine Learning [46], [32], [33], [40], [29], [20], [21], [34], [12], [13] TABLE III.…”
Section: During Data Collectionmentioning
confidence: 99%