In pandemic periods such as COVID-19, economic and sociological problems threaten human life and public order on a global scale. In these periods, the use of solar powered heating-cooling systems to meet the thermal needs of the hospitals and to provide the thermal comfort conditions offer important solutions for the elimination of technical, economic and environmental problems related to energy supply. In this study, covering the heating, cooling and hot water supply of a sample hospital building for the three largest cities of Turkey with a novel solar powered Li-Cl absorption heat pump system was investigated using the TRNSYS simulation program. The use of a unique NH3-H2O resorption system as a solar powered auxiliary system was also investigated. It was determined that the total annual hot water and cooling needs of the hospital buildings in all three provinces are supplied almost completely with the solar energy powered system without compromising the hygiene and thermal comfort of the occupants and the average annual solar fraction of total heating demands are calculated as 50%, 54% and 65% for İstanbul, Ankara and İzmir, respectively. In addition, depending on the use of solar energy, it has been observed that annually 126 tons of CO2 emissions were saved and an economic saving of 524 375 TL was achieved in total. Considering the problems about the energy supply during the epidemic periods, it was concluded that meeting the energy requirements of hospitals with clean, renewable and independent energy source will provide significant benefits to the countries.