Many algorithms use clustering to improve vehicular ad hoc network performance. The expected points of many of these approaches support multiple rounds of data to the roadside unit and constantly include clustering in every round of single-hop data transmission towards the road side unit; however, the clustering in every round maximizes the number of control messages and there could be the possibility of collision and decreases in network energy. Multi-hop transmission prolongs the cluster head node’s lifetime and boosts the network’s efficiency. Accordingly, this article proposes a new fuzzy-clustering-based routing algorithm to benefit from multi-hop transmission clustering simultaneously. This research has analyzed the limitation of clustering in each round, different algorithms were used to perform the clustering, and multi-hop routing was used to transfer the data of every cluster to the road side unit. The fuzzy logic was used to choose the head node of each cluster. Three parameters, (1) distance of each node, (2) remaining energy, and (3) number of neighbors of every node, were considered as fuzzy criteria. The results of this research were compared to various other algorithms in relation to parameters like dead node in every round, first node expire, half node expire, last node expire, and the network lifetime. The simulation results show that the proposed approach outperforms other methods. On the other hand, the vehicular ad hoc network (VANET) environment is vulnerable at the time of data transmission. The NS-2 software tool was used to simulate and evaluate the proposed fuzzy logic opportunistic routing’s performance results concerning end-to-end delay, packet delivery, and network throughput. We compare to the existing protocols, such as fuzzy Internet of Things (IoT), two fuzzy, and Fuzzy-Based Driver Monitoring System (FDMS). The performance comparison also emphasizes an effective utilization of the resources. Simulations on the highway environment show that the suggested protocol has an improved Quality of Service (QoS) efficiency compared to the above published methods in the literature.