Neuronal spike patterns are the fundamental units of neural communication in the brain, which is still not fully understood. Entropy measures offer a quantitative framework to assess the variability and information content of these spike patterns. By quantifying the uncertainty and informational content of neuronal patterns, entropy measures provide insights into neural coding strategies, synaptic plasticity, network dynamics, and cognitive processes. Here, we review basic entropy metrics and then we provide examples of recent advancements in using entropy as a tool to improve our understanding of neuronal processing. It focuses especially on studies on critical dynamics in neural networks and the relation of entropy to predictive coding and cortical communication. We highlight the necessity of expanding entropy measures from single neurons to encompass multi-neuronal activity patterns, as cortical circuits communicate through coordinated spatiotemporal activity patterns, called neuronal packets. We discuss how the sequential and partially stereotypical nature of neuronal packets influences the entropy of cortical communication. Stereotypy reduces entropy by enhancing reliability and predictability in neural signaling, while variability within packets increases entropy, allowing for greater information capacity. This balance between stereotypy and variability supports both robustness and flexibility in cortical information processing. We also review challenges in applying entropy to analyze such spatiotemporal neuronal spike patterns, notably, the “curse of dimensionality” in estimating entropy for high-dimensional neuronal data. Finally, we discuss strategies to overcome these challenges, including dimensionality reduction techniques, advanced entropy estimators, sparse coding schemes, and the integration of machine learning approaches. Thus, this work summarizes the most recent developments on how entropy measures contribute to our understanding of principles underlying neural coding.