[1] In the mid-1970s, it was recognized that chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change, as well as being substances that deplete stratospheric ozone. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone-depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons. This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, sulfur hexafluoride, nitrogen trifluoride, and related halogen containing compounds. In addition, we provide a comprehensive and self-consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present global temperature change potentials for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.