Rare gas containing protonated nitrogen cations, HRgN(2)(+) (Rg=He, Ar, Kr, and Xe), have been predicted using quantum computational methods. HRgN(2)(+) ions exhibit linear structure (C(∞v) symmetry) at the minima and show planar structure (C(s) symmetry) at the transition state. The stability is determined by computing the energy differences between the predicted ions and its various unimolecular dissociation products. Analysis of energy diagram indicates that HXeN(2)(+) is thermodynamically stable with respect to dissociated products while HHeN(2)(+), HArN(2)(+), and HKrN(2)(+) ions are metastable with small barrier heights. Moreover, the computed intrinsic reaction coordinate analysis also confirms that the minima and the 2-body global dissociation products are connected through transition states for the metastable ions. The coupled-cluster theory computed dissociation energies corresponding to the 2-body dissociation (HN(2)(+) + Rg) is -288.4, -98.3, -21.5, and 41.4 kJ mol(-1) for HHeN(2)(+), HArN(2)(+), HKrN(2)(+), and HXeN(2)(+) ions, respectively. The dissociation energies are positive for all the other channels implying that the predicted ions are stable with respect to other 2- and 3-body dissociation channels. Atoms-in-molecules analysis indicates that predicted ions may be best described as HRg(+)N(2). It should be noted that the energetic of HXeN(2)(+) ion is comparable to that of the experimentally observed stable mixed cations, viz. (RgHRg')(+). Therefore, it may be possible to prepare and characterize HXeN(2)(+) ions in an electron bombardment matrix isolation technique.