We present a Green's function formalism for an interacting Bose-Einstein condensate (BEC) satisfying the two required conditions: (i) the infrared-divergent longitudinal susceptibility with respect to the BEC order parameter, and (ii) the Nepomnyashchii-Nepomnyashchii identity stating the vanishing off-diagonal self-energy in the low-energy and low-momentum limit. These conditions cannot be described by the ordinary mean-field Bogoliubov theory, the many-body T -matrix theory, as well as the random-phase approximation with the vertex correction. In this paper, we show that these required conditions can be satisfied, when we divide many-body corrections into singular and non-singular parts, and separately treat them as different self-energy corrections. The resulting Green's function may be viewed as an extension of the Popov's hydrodynamic theory to the region at finite temperatures. Our results would be useful in constructing a consistent theory of BECs satisfying various required conditions, beyond the mean-field level.