BackgroundAlthough a metabolic profile represents a valid tool utilized in dairy herds to determine abnormalities in blood chemistry related to an increased risk of production diseases, there are no studies on application of Fourier Transform mid-infrared (FT-MIR) spectroscopy. This study assesses the potential application of FT-MIR to analyze the main blood biochemical parameters included in the metabolic profile of dairy cows. Infrared transmission spectra were acquired for 35 plasma samples (two replicates on each sample) of Italian Friesian dairy cows (14 primiparous and 21 pluriparous), all without clinical events, and at different stages of lactation, although mainly in the transition phase. Each sample was also analyzed independently using accepted reference clinical chemical methods and these results were used as calibrating values to perform predictive models by PLS method using cross validation.ResultsMeasured blood parameters concentrations were all within the reference ranges reported for healthy dairy cows. The number of extracted factors with the PLS procedure for each prediction model ranged between 3 and 7. The coefficient of determination (R2) of the prediction models ranged between 0.1 to values close to 1. R2 values greater than 0.9 were observed for the prediction models of total cholesterol, total protein, globulin, and albumin; values between 0.75 and 0.9 were observed for urea, NEFA, and total bilirubin, while values of R2 lower than 0.6 were observed for all minerals and for enzyme activity. The range error ratio (RER) and prediction to deviation (RPD) ranged from 5.1 to 43.8 and from 1 to 13.8 for RER and RPD, respectively. Values of RPD greater than 5 were observed for total cholesterol, total protein, albumin, and globulin. RPD ranged between 2 and 5 for the prediction models of urea, NEFA, and total bilirubin, while RPD and RER were low for minerals and enzyme activities.ConclusionsAlthough the results of this study require further validation, the use of FT-MIR spectroscopy was possible and provides fairly accurate measurement of various parameters of great importance in the evaluation of the metabolic and inflammatory status in dairy cows.