Mechanical stresses of materials are generally coupled with temperature variations and then, monitoring such variations can help gaining information about the material behavior under the applied loads. This can be accomplished with an infrared imaging device, which can be advantageously exploited to sense the thermal radiation associated with mechanical stresses and to obtain a legible explicative temperature map. In the present paper, glass/epoxy is used as material case study to show that thermal signatures visualized during the load application can be decoded into knowledge, which can contribute to the material characterization. In particular, glass/epoxy specimens are subjected to three types of tests: cantilever beam alternate bending, quasi-static bending and low velocity impact. Thermal images are acquired in time sequence during each test and after post-processed and analyzed. It is possible to get data about the damage initiation and its evolution under either quasi-static bending, or impact. In particular, a cute analysis of thermal images supplies information about damage types (matrix cracks, or fibers breakage) and extension of delamination, as well of the impact duration and the time to reach peak contact force. It is also possible to well depict the harmonic cantilever beam oscillations through the associated small temperature variations.