This study was designed to examine the relationship among microvascular leakage, edema, and baseline airway function. Microvascular leakage was induced in the airways of anesthetized, tracheostomized New Zealand White rabbits (n = 22) by using nebulized N-formyl-methionyl-leucyl-phenylalanine (10 mg) and was measured in the trachea by using the Evans blue dye technique. Airway wall thickness was assessed morphometrically in the right main bronchus after Formalin fixation at a pressure of 25 cmH2O. Areas calculated included the mucosal wall area, the adventitial wall area, the total wall area, and the percentage of total wall area consisting of blood vessels. A neutrophil count was also performed by analyzing numbers of cells in both the mucosal wall area and the adventitial wall area. Airway function was assessed before and 30 min after challenge with N-formyl-methionyl-leucyl-phenylalanine by determining airway resistance, functional residual capacity, specific airway resistance, and flow-volume and pressure-volume curves (after paralysis of the animals with suxamethonium). The concentration of Evans blue dye in tracheal tissue ranged from 31.3 to 131.2 micrograms. There was a significant correlation between this concentration and both the adventitial wall area (P < 0.01) and mucosal neutrophil numbers (P < 0.005). There was no correlation between Evans blue concentration and either blood vessel area or changes in respiratory physiology parameters before and after challenge. There was no significant difference between any respiratory physiology measurements before and after challenge. We conclude that an increase in microvascular leakage correlates with airway edema in the adventitia; however, these airway changes have no significant effect on airway elastic or resistive properties.