Air pollution is considered to be one of a risk factor for rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is commonly used as a mouse model of human RA. However, the impact of specific particulate matter (PM) components on the incidence and severity of RA has still not been established. The aim of this study was to develop an experimental model of CIA suitable to test arthritogenicity of inhaled PM. A mild form of CIA was induced in DBA1/J mice inhaled with various components of SRM 1648a PM. The incidence and severity of arthritis was assessed, and the selected serum markers of autoimmunity and inflammation were determined. Clinical arthritis was observed from the booster CII immunisation onward. Anti-cyclic citrullinated peptide antibodies, a diagnostic marker of RA, were detected in serum of these mice. All inhaled pollutants, crude PM, PM with reduced organic content, ferric, and silica nanoparticles markedly increased CIA incidence and severity. The fastest progression of CIA development was caused by crude PM and was linked to enhanced serum levels of anti-CII IgG, the prominent arthritogenic autoantibodies. On the other hand, inhaled nanoparticles enhanced serum levels of TNFα, a major proinflammatory arthritogenic cytokine. We recommend this experimental model of mild CIA to test the mechanisms of arthritis exacerbation by inhaled air pollutants. Further studies are necessary to determine whether PM-aggravated arthritis is caused by inflammatory mediators translocated from inflamed lung into systemic circulation or whether PM translocated into the bloodstream directly exacerbate joint inflammation.