In 1991, strained InAlGaAs quantum well lasers were first proposed as alternatives to AlGaAs lasers for various applications, including solid-state pumping. Enhanced reliability was the rationale for their development, having been inspired by earlier observations of lattice hardening in strained InGaAs lasers. The hoped-for dark-line defect (DLD) suppression as well as a threshold current advantage for this system have already been documented. In this update, we will present further aspects of this work, including long-term reliability, maximum (catastrophic) power limits, epitaxial structure design bounds and parametric crystal growth investigations. Our work has enabled the demonstration of 15 W cw linear arrays and pulsed V-Groove Phased Arrays. Their performance and potential applications will also be discussed.