Recent studies have shown that urinary excretion of podocyte proteins is an indicator of podocyte injury, and that podocyte abnormalities and elevated concentrations of Amadori-modified glycated albumin (AGA) are linked to the development of diabetic nephropathy and to each other. We evaluated relationships between urinary markers of podocyte damage, increased AGA and filtration function in rats made diabetic by streptozotocin injection and treated for 8 weeks with a compound that inhibits the formation of AGA, with age-matched nondiabetic and diabetic rats serving as controls. Blood and urine were collected for measurement of glycated albumin, creatinine, albumin, nephrin, podocalyxin, and βig-h3 protein. The elevated circulating concentrations of glycated albumin and higher urinary levels of these podocyte markers as well as of albumin that were observed in diabetic rats compared with nondiabetic controls were significantly reduced in animals receiving test compound, and decrease in urinary biomarkers correlated with reduction in AGA. The results provide evidence that lowering the concentration of AGA, independent of filtration status and hyperglycemia, reduces urinary nephrin, podocalyxin, and βig-h3 protein, linking the increased glycated albumin associated with diabetes to podocyte abnormalities and shedding of podocyte proteins into the urine.