Chromosomal translocations fusing the locus of nucleoporin NUP214 each with the protooncogenes SET and DEK are recurrent in, largely intractable, acute leukemias. The molecular basis underlying the pathogenesis of SET-NUP214 and DEK-NUP214 are still poorly understood, but both chimeras inhibit protein nuclear export mediated by the ß-karyopherin CRM1. In this report, we show that SET-NUP214 and DEK-NUP214 both disturb the localization of proteins essential for nucleocytoplasmic transport, in particular for CRM1mediated protein export. Endogenous and exogenous SET-NUP214 and DEK-NUP214 form nuclear bodies. These nuclear bodies disperse upon targeted inhibition of CRM1 and the two fusion proteins re-localize throughout the nucleoplasm. Moreover, SET-NUP214 and DEK-NUP214 nuclear bodies reestablish shortly after removal of CRM1 inhibitors. Likewise, cell viability, metabolism, and proliferation of leukemia cell lines harboring SET-NUP214 and DEK-NUP214 are compromised by CRM1 inhibition, which is even sustained after clearance from CRM1 antagonists. Our results indicate CRM1 as a possible therapeutic target in NUP214related leukemia. This is especially important, since no specific or targeted treatment options for NUP214 driven leukemia are available yet.