Complementary microscopic and diffraction based methods revealed a peculiar microstructure of electrodeposited nickel. For the as-deposited layer, thus, without any additional treatment, multiple twinning yields a high population of Σ3n boundaries, which interrupts the network of normal high angle grain boundaries. A peculiar arrangement of Σ3 boundaries forming five-fold junctions is observed. The resulting microstructure meets the requirements for grain boundary engineering. Twinning induced effects on the crystallographic orientation of grains result in one major texture component being a ⟨210⟩ fiber axis and additional minor orientations originating from first and second generation twins of ⟨210⟩, i.e., ⟨542⟩ and ⟨20 2 1⟩.