In cultured rat aorta-derived A-10 cells, epidermal growth factor-urogastrone (EGF-URO) acts synergistically with arginine vasopressin (AVP) to augment the AVP-mediated release of 3H-arachidonate (3H-AA) from 3H-AA prelabeled cells. On its own, EGF-URO had no effect on AA release and had no effect on calcium influx or efflux either in the absence or presence of AVP. The synergistic action of EGF-URO was not affected by actinomycin D, cycloheximide, indomethacin, by the diacylglycerol lipase inhibitor U-57,908, or by the tyrosine kinase inhibitors genistein (GS) and tyrphostin (TP). TP did, nonetheless, completely abrogate 3H-thymidine incorporation triggered in the presence of EGF-URO. Although EGF-URO stimulated an increase in calpactin-II (lipocortin-I) phosphorylation in permeabilized cells, no such increase was detected in intact cells exposed to EGF-URO either alone or in combination with AVP, under conditions where EGF-URO augmented the action of AVP. The phospholipase A2 inhibitor, mepacrine, had no effect on AVP-mediated AA release, but abolished the synergistic action of EGF-URO. We conclude that in contrast with our previous results with gastric smooth muscle strips, wherein EGF-URO acts via the diacylglycerol lipase-mediated metabolism of diacylglycerol, and in keeping with observations with cultured mesangial cells, EGF-URO acts synergistically with AVP in A-10 cells via the activation of phospholipase A2. This synergistic action of EGF-URO does not appear to be due to increased levels of cyclooxygenase and would appear not to require increased tyrosine kinase activity.