2011
DOI: 10.1016/j.neuroimage.2011.05.029
|View full text |Cite
|
Sign up to set email alerts
|

Inhibition in early Alzheimer's disease: An fMRI-based study of effective connectivity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

2
22
0

Year Published

2011
2011
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 36 publications
(24 citation statements)
references
References 68 publications
2
22
0
Order By: Relevance
“…Approaches estimating the effective connectivity generally start with sets of assumptions on the inherent data structure (time series, correlation matrix or higher-order statistics) or underlying biophysics to be modeled, then seek the optimum models using criteria such as maximum likelihoods or Bayesian inferences, and finally invoke the learned model parameters to conclude causality or conditional dependences. The most common approaches include dynamic causal modeling (DCM) (Friston, Harrison et al 2003, Penny, Stephan et al 2004, Lee, Friston et al 2006, Stephan, Weiskopf et al 2007, Marreiros, Kiebel et al 2008, Stephan, Kasper et al 2008, Penny, Stephan et al 2010, Schuyler, Ollinger et al 2010, Seghier, Zeidman et al 2010, Stephan, Penny et al 2010, Daunizeau, David et al 2011, Friston, Li et al 2011, Li, Daunizeau et al 2011, Lohmann, Erfurth et al 2012, Friston, Kahan et al 2014), Granger causality analysis (Granger 1969, Goebel, Roebroeck et al 2003, Harrison, Penny et al 2003, Roebroeck, Formisano et al 2005, Deshpande, LaConte et al 2009), structural equation modeling (SEM) (McIntosh 1994, Buchel and Friston 1997, Horwitz, Tagamets et al 1999, Bullmore, Horwitz et al 2000), psychophysiological interaction (Friston, Buechel et al 1997), graphical causal modeling (Pearl 2000, Spirtes 2000), dynamic Bayesian networks (Rajapakse and Zhou 2007), and switching linear dynamic system (Smith, Pillai et al 2010); and have been actively employed in clinical studies to identify abnormal interactions in patients (e.g., Alzheimer’s disease (Agosta, Rocca et al 2010, Rytsar, Fornari et al 2011, Liu, Zhang et al 2012, Neufang, Akhrif et al 2014, Zhong, Huang et al 2014), depression (Schlosser, Wagner et al 2008, Almeida, Versace et al 2009, Goulden, McKie et al 2010, Moses-Kolko, Perlman et al 2010, Hamilton, Chen et al 2011, Iwabuchi, Peng et al 2014, Liu, Wu et al 2015), and schizophrenia (Schlosser, Gesierich et al 2003, Kim, Burge et al 2008, Benetti, Mechelli et al 2009, Crossley, Mechelli et al 2009, Dima, Roiser et al 2009, Allen, Stephan et al 2010, Diaconescu, Jensen et al 2011, Deserno, Sterzer et al 2012, Guller, Tononi et al 2012, Muk...…”
Section: Discussionmentioning
confidence: 99%
“…Approaches estimating the effective connectivity generally start with sets of assumptions on the inherent data structure (time series, correlation matrix or higher-order statistics) or underlying biophysics to be modeled, then seek the optimum models using criteria such as maximum likelihoods or Bayesian inferences, and finally invoke the learned model parameters to conclude causality or conditional dependences. The most common approaches include dynamic causal modeling (DCM) (Friston, Harrison et al 2003, Penny, Stephan et al 2004, Lee, Friston et al 2006, Stephan, Weiskopf et al 2007, Marreiros, Kiebel et al 2008, Stephan, Kasper et al 2008, Penny, Stephan et al 2010, Schuyler, Ollinger et al 2010, Seghier, Zeidman et al 2010, Stephan, Penny et al 2010, Daunizeau, David et al 2011, Friston, Li et al 2011, Li, Daunizeau et al 2011, Lohmann, Erfurth et al 2012, Friston, Kahan et al 2014), Granger causality analysis (Granger 1969, Goebel, Roebroeck et al 2003, Harrison, Penny et al 2003, Roebroeck, Formisano et al 2005, Deshpande, LaConte et al 2009), structural equation modeling (SEM) (McIntosh 1994, Buchel and Friston 1997, Horwitz, Tagamets et al 1999, Bullmore, Horwitz et al 2000), psychophysiological interaction (Friston, Buechel et al 1997), graphical causal modeling (Pearl 2000, Spirtes 2000), dynamic Bayesian networks (Rajapakse and Zhou 2007), and switching linear dynamic system (Smith, Pillai et al 2010); and have been actively employed in clinical studies to identify abnormal interactions in patients (e.g., Alzheimer’s disease (Agosta, Rocca et al 2010, Rytsar, Fornari et al 2011, Liu, Zhang et al 2012, Neufang, Akhrif et al 2014, Zhong, Huang et al 2014), depression (Schlosser, Wagner et al 2008, Almeida, Versace et al 2009, Goulden, McKie et al 2010, Moses-Kolko, Perlman et al 2010, Hamilton, Chen et al 2011, Iwabuchi, Peng et al 2014, Liu, Wu et al 2015), and schizophrenia (Schlosser, Gesierich et al 2003, Kim, Burge et al 2008, Benetti, Mechelli et al 2009, Crossley, Mechelli et al 2009, Dima, Roiser et al 2009, Allen, Stephan et al 2010, Diaconescu, Jensen et al 2011, Deserno, Sterzer et al 2012, Guller, Tononi et al 2012, Muk...…”
Section: Discussionmentioning
confidence: 99%
“…For example, while dynamic casual modeling has been shown to be more predictive of memory success than simple task activations (Gagnepain et al, 2011), it requires the analysis to be limited to only an a priori specified and small set of brain regions(Neufang et al, 2011; Rytsar et al, 2011). Yet, collectively, previous studies support that context-dependent connectivity has the potential to characterize neural correlates of synaptic, neuronal and/or neurovascular integrity as they relate to cognition and behavioral performance.…”
Section: Introductionmentioning
confidence: 99%
“…The IF increase found in AD might have different causes, perhaps due to a compensatory reorganization of brain circuits due to synaptic plasticity (Adams, 1991) or due to the fact that AD patients might fail in ignoring irrelevant inputs when integrating information to perform particular cognitive tasks (Rodriguez et al, 1999) or due to the reduction in inhibitory modulatory influence across the whole-brain network in AD (Amieva et al, 2004;Bentley et al, 2008;Rytsar et al, 2011); however, the exact mechanism producing an increase of IF in AD needs further investigation.…”
Section: Discussionmentioning
confidence: 99%