Metallomics is an emerging scientific area integrating the research fields related to the understanding of the molecular mechanisms of metal-associated life processes and the entirety of metal and metalloid species within a cell or tissue type. In metallomics, metalloproteins, metalloenzymes and other metalcontaining biomolecules in a biological system are referred to as metallomes, similar to genomes and proteomes in genomics and proteomics, respectively. This review discusses the concept of metallomics with a focus on analytical techniques and methods, particularly the so-called hyphenated techniques which combine a high-resolution separation technique (gel electrophoresis/laser ablation, chromatography or capillary electrophoresis) with a highly sensitive detection method such as elemental (inductively coupled plasma, ICP) or molecular (electron spray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI)) mass spectrometry, or nuclear X-ray fluorescence/ absorption spectrometry. The applications of these advanced analytical methods in the identification of metallo-/phospho-/seleno-proteins, probing of relationships between structure and function of metalloproteins, and study of clinically used metallodrugs will be selectively outlined, along with their advantages and limitations. metallomics, metallome, metallodrug, metalloprotein, chemical speciation