NO is a cell-derived radical reported to inhibit mast cell degranulation and subsequent allergic inflammation, although whether its action is nonspecific or occurs via specific molecular mechanisms remains unknown. To examine this question, we set out to determine whether NO inhibits mast cell cytokine production, and, if so, whether it also alters FcεRI-dependent signal transduction. As hypothesized, the radical inhibited IgE/Ag-induced IL-4, IL-6, and TNF production. Although NO did not influence phosphorylated JNK, p38 MAPK, or p44/42 MAPK, it did inhibit phosphorylation of phospholipase Cγ1 and the AP-1 transcription factor protein c-Jun, but not NF-κB or CREB. NO further completely abrogated IgE/Ag-induced DNA-binding activity of the nuclear AP-1 proteins Fos and Jun. These results show that NO is capable of inhibiting FcεRI-dependent mast cell cytokine production at the level of gene regulation, and suggest too that NO may contribute to resolution of allergic inflammation.