Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability. The maximum tolerated dose of AGEs was determined, revealing significant downregulation of the cardiac gene gap junction alpha 1 (GJA1). Furthermore, the study assessed the effects of AGEs, glucose shock, and their combination on biomarkers, cardiac myosin heavy chain (MHC), and connexin-43 (Cx-43) in AC16 cells. It was found that AGEs supplementation induced an increase in MHC expression while reducing Cx-43 expression, potentially contributing to cardiac dysfunction. Glucose shock also affected cardiomyocyte contractility, highlighting the complex interplay between AGEs, glucose levels, and cardiac function. Additionally, human iPSC-derived cardiomyocytes were subjected to varying doses of AGEs, revealing dose-dependent cytotoxicity and alterations in contractility. Immunostaining confirmed upregulation of MYH7, a cardiac gene associated with muscle contraction, in response to AGEs. However, the expression of Cx-43 was minimal in these cells. This comprehensive investigation sheds light on the intricate relationship between AGEs, glucose shock, and cardiomyocyte function, providing insights into potential mechanisms underlying cardiac dysfunction associated with metabolic disorders such as diabetic cardiomyopathy (DCM).
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability. The maximum tolerated dose of AGEs was determined, revealing significant downregulation of the cardiac gene gap junction alpha 1 (GJA1). Furthermore, the study assessed the effects of AGEs, glucose shock, and their combination on biomarkers, cardiac myosin heavy chain (MHC), and connexin-43 (Cx-43) in AC16 cells. It was found that AGEs supplementation induced an increase in MHC expression while reducing Cx-43 expression, potentially contributing to cardiac dysfunction. Glucose shock also affected cardiomyocyte contractility, highlighting the complex interplay between AGEs, glucose levels, and cardiac function. Additionally, human iPSC-derived cardiomyocytes were subjected to varying doses of AGEs, revealing dose-dependent cytotoxicity and alterations in contractility. Immunostaining confirmed upregulation of MYH7, a cardiac gene associated with muscle contraction, in response to AGEs. However, the expression of Cx-43 was minimal in these cells. This comprehensive investigation sheds light on the intricate relationship between AGEs, glucose shock, and cardiomyocyte function, providing insights into potential mechanisms underlying cardiac dysfunction associated with metabolic disorders such as diabetic cardiomyopathy (DCM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.