Aptamers are RNA or DNA oligonucleotides identified within a randomly synthesized library, through an in vitro selection procedure. The selected candidates display a predetermined property of interest with respect to a given target. Successful selection has been carried out against targets ranging from small (amino acids, antibiotics) to macro-molecules (proteins, nucleic acids). They generally show an affinity in the nanomolar range and a high specificity of target recognition. Interestingly, aptamers selected against purified targets in the test tube retain their properties within cells. RNA aptamers can be generated in situ from an appropriate DNA construct or delivered as nuclease-resistant oligonucleotide analogues. For example, aptamers recognizing RNA structure through looploop interactions modulate the trans-activation of in vitro transcription mediated by the TAR RNA element of human immunodeficiency virus type 1. Consequently, they constitute both exquisite tools for functional genomics analysis and promising prototypes of therapeutic agents. Natural aptameric motifs have been identified within mRNA sequences, which upon binding to a metabolite control the expression of the encoded gene, which is generally involved in the biosynthesis of this particular metabolite.