Although experimental animal data have implicated ornithine decarboxylase, a key regulatory enzyme of polyamine biosynthesis, in brain development and function, little information is available on this enzyme in normal or abnormal human brain. We examined the influence, in autopsied human brain, of postnatal development and aging, regional distribution, and Alzheimer's disease on the activity of ornithine decarboxylase. Consistent with animal data, human brain ornithine decarboxylase activity was highest in the perinatal period, declining sharply (by '-60%) during the first year of life to values that remained generally unchanged up to senescence. In adult brain, a moderately heterogeneous regional distribution of enzyme activity was observed, with high levels in the thalamus and occipital cortex and low levels in cerebellar cortex and putamen. In the Alzheimer's disease group, mean ornithine decarboxylase activity was significantly increased in the temporal cortex (+76%), reduced in occipital cortex(-70%), and unchanged in hippocampus and putamen. In contrast, brain enzyme activity was normal in patients with the neurodegenerative disorder spinocerebellar ataxia type I. Our demonstration of ornithine decarboxylase activity in neonatal and adult human brain suggests roles for ornithine decarboxylase in both developing and mature brain function, and we provide further evidence for the involvement of abnormal polyamine system activity in Alzheimer's disease. Key Words: Human brain-Ornithine decarboxylase-Polyamine system-Development-Aging -Alzheimer's disease.