Xenotransplantation of human tumor cells into immunodeficient mice has been a powerful preclinical tool in several hematological malignancies, with the notable exception of chronic lymphocytic leukemia (CLL). For several decades, this possibility was hampered by the inefficient and/or short-term engrafment of CLL cells into available animals. The development of new generations of immunocompromised mice has allowed to partially overcome these constraints. Novel humanized animal models have been created that allow to recapitulate the pathogenesis of the disease and the complex in vivo relationships between leukemic cells and the microenvironment. In this review we discuss the development of xenograft models of CLL, how they may help elucidating the mechanisms that account for the natural history of the disease and facilitating the design of novel therapeutic approaches.