Presence of quiescent, therapy evasive population often described as cancer stem cells (CSC) or tumor initiating cells (TIC) is often attributed to extreme metastasis and tumor recurrence.This population is typically enriched in a tumor as a result of microenvironment or chemotherapy induced stress. The TIC population adapts to this stress by turning on cell cycle arrest programs that is a "fail-safe" mechanism to prevent expansion of malignant cells to prevent further injury.Upon removal of the "stress" conditions, these cells restart their cell cycle and regain their proliferative nature thereby resulting in tumor relapse. Growth Arrest Specific 5 (GAS5) is a long-noncoding RNA that plays a vital role in this process. In pancreatic cancer, CD133+ population is a typical representation of the TIC population that is responsible for tumor relapse.In this study, we show for the first time that emergence of CD133+ population coincides with upregulation of GAS5, that reprograms the cell cycle to slow proliferation by inhibiting GR mediated cell cycle control. The CD133+ population further routed metabolites like glucose to shunt pathways like pentose phosphate pathway, that were predominantly biosynthetic in spite of being quiescent in nature but did not use it immediately for nucleic acid synthesis. Upon inhibiting GAS5, these cells were released from their growth arrest and restarted the nucleic acid synthesis and proliferation. Our study thus showed that GAS5 acts as a molecular switch for regulating quiescence and growth arrest in CD133+ population, that is responsible for aggressive biology of pancreatic tumors. 25, 26 . We and others have shown that CD133+ population are generally slow-cycling or quiescent 2, 6, 36 . This indicates that the cell cycle plays an active role in maintenance of this population in a quiescent and slow cycling state.Growth Arrest Specific 5 or GAS5, is a long non-coding RNA regulates cell cycle in a number of mammalian systems including several cancers 7, 15, 16, 23 . It also mediates cell proliferation by regulating CDK6 activity 17 . Studies have also shown that GAS5 forms a positive feedback network with a number of genes involved in self-renewal like Sox2/Oct4, making this long noncoding RNA (LncRNA) a critical player in induction and maintenance of the "stemness" state in a tumor 34 . GAS5 is further involved in regulation of human embryonic stem cell self-renewal by maintaining NODAL signaling 38 . Mechanistically, the effect of GAS5 on cell cycle is regulated by its interaction with the glucocorticoid receptor (GR) 11 . GRs are nuclear receptor proteins that control cell proliferation via their effect on cell cycle 30 . GAS5 interacts with the activated GR