BackgroundFarrerol, isolated from rhododendron, has been shown to have the anti-bacterial activity, but no details on the anti-inflammatory activity. We further evaluated the effects of this compound in two experimental models of lung diseases.Methodology/Principal FindingsFor the asthma model, female BALB/c mice were challenged with ovalbumin (OVA), and then treated daily with farrerol (20 and 40 mg/kg, ip) as a therapeutic treatment from day 22 to day 26 post immunization. To induce acute lung injury, female BALB/c mice were injected intranasally with LPS and treated with farrerol (20 and 40 mg/kg, i.p.) 1 h prior to LPS stimulation. Inflammation in the two different models was determined using ELISA, histology, real-time PCR and western blot. Farrerol significantly regulated the phenotype challenged by OVA, like cell number, Th1 and Th2 cytokines levels in the BALF, the OVA-specific IgE level in the serum, goblet cell hyperplasia in the airway, airway hyperresponsiveness to inhaled methacholine and mRNA expression of chemokines and their receptors. Furthermore, farrerol markedly attenuated the activation of phosphorylation of Akt and nuclear factor-κB (NF-κB) subunit p65 both in vivo and in vitro. However, farrerol has no effect on the acute lung injury model.Conclusion/SignificanceOur finding demonstrates that the distinct anti-inflammatory effect of farrerol in the treatment of asthma acts by inhibiting the PI3K and NF-κB pathway.