Background: Acute coronary syndrome (ACS) is a serious type of cardiovascular diseases. This study aimed to investigate the expression patterns and clinical value of in ACS patients, and further uncover the function of miR-145 in ACS rats.
Methods:Quantitative real-time PCR was used to estimate the expression of miR-145. Diagnostic value of miR-145 was evaluated, and its correlation with endothelial injury marker (vWF and H-FABP) and pro-inflammatory cytokines (IL-6 and TNF-α) was analyzed. Coronary artery ligation was adopted to construct the ACS rat model, and the effects of miR-145 on endothelial injury, inflammation and vascular endothelial cells (VECs) biological function were examined.Results: Downregulated expression of miR-145 was found in the ACS serum samples compared with the healthy controls. The expression of miR-145 was proved to be a diagnostic biomarker and negatively correlated with vWF, H-FABP, IL-6 and TNF-α. The similar serum expression trends of miR-145 in ACS patients were also observed in the ACS rats, and the overexpression of miR-145 could decrease the elevated vWF, H-FABP, IL-6 and TNF-α in the animal model. Moreover, the upregulation of miR-145 in VECs led to promoted proliferation and migration. The bioinformatics prediction data and luciferase report results indicated that FOXO1 was a direct target of miR-145.
Conclusions:In conclusion, it was hypothesized that serum decreased expression of miR-145 may serve as a potential diagnostic biomarker in ACS patients. Overexpression of miR-145 may improve the endothelial injury and abnormal inflammation through targeting FOXO1, indicating that miR-145 serves as a candidate therapeutic target of ACS. CW, Lim DS. Comparison of ticagrelor versus prasugrel for inflammation, vascular function, and circulating endothelial progenitor cells in diabetic patients with non-ST-segment elevation acute coronary syndrome requiring coronary stenting: a prospective, randomized, crossover trial. -217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother. 2017;95:1718-24.