Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODCdeficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation.Overexpression of the c-Myc, N-Myc, or L-Myc members of the Myc oncogene family is a common event in human tumors. This selection likely reflects Myc's ability to provide continuous proliferative and angiogenic signals under growth-limiting conditions, such as those that occur in the tumor microenvironment (38). However, Myc's propensity to induce continuous proliferation also blocks terminal differentiation (11) and triggers the apoptotic program (2). c-Myc is a basic helix-loophelix leucine zipper protein that exhibits sequence-specific DNA binding to CACGTG or CACATG elements when dimerized with its obligate basic helix-loop-helix leucine zipper partner Max (8). Despite Myc's well-defined function as a transcriptional transactivator, the numbers of its ascribed targets that have been proven to be direct are relatively few, but they do include ornithine decarboxylase (ODC) (6), ␣-prothymosin (15), eIF-4E (44), carbamoyl-phosphate synthase-aspartate carbamoyltransferase-dihydroorotase (cad) (28), a DEAD box-related gene (MrDb) (20), the ubiquitin E2 ligase Cul1 (32), and ECA39 (7). A compelling example of a target gene that contributes to c-Myc's biological effects is ODC (34, 35), which is activated by growth factors and by c-Myc through two conserved CACGTG sites present in the first intron of vertebrate ODC genes (6). ODC is the key regulator of the polyamine biosynthetic pathway and decarboxylates L-ornithine to form putrescine (50). ODC expression is highly regulated by changes in its transcription, translation, and RNA and protein half-life (40). Furthermore, ODC enzyme activity is tightly controlled and shows biphasic induction during late G 1 and at G 2 /M (5). Inhibition of ODC by difluoromethylornithine (DFMO) compromises cell growth and transformation (3) and induces cell cycle arrest in G 1 (35,43). ODC inhibition results in marked reductions in the intracellular levels of th...