Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Activation of the coagulation system is a characteristic feature of sickle cell anemia, which also includes clinical thrombosis. The sickle transgenic mouse abnormally expresses tissue factor (TF) on the pulmonary vein endothelium. Knowing that this aberrancy is stimulated by inflammation, we sought to determine whether nitric oxide (NO) contributes to regulation of endothelial TF expression in the sickle mouse model. We used the NY1DD sickle mouse, which exhibits a low-TF to high-TF phenotype switch on exposure to hypoxia/reoxygenation. Manipulations of NO biology, such as breathing NO or addition of arginine or L-NAME (N-nitro-L-arginine-methyl-ester) to the diet, caused significant modulations of TF expression. This was also seen in hBERK1 sickle mice, which have a different genetic background and already have high-TF even at ambient air. Study of NY1DD animals bred to overexpress endothelial nitric oxide synthase (eNOS; eNOSTg) or to have an eNOS knockout state (one eNOS 2/2 animal and several eNOS 1/2 animals) demonstrated that eNOS modulates endothelial TF expression in vivo by down-regulating it. Thus, the biodeficiency of NO characteristic of patients with sickle cell anemia may heighten risk for activation of the coagulation system. Am. J. Hematol. 85:41-45, 2010. V
Activation of the coagulation system is a characteristic feature of sickle cell anemia, which also includes clinical thrombosis. The sickle transgenic mouse abnormally expresses tissue factor (TF) on the pulmonary vein endothelium. Knowing that this aberrancy is stimulated by inflammation, we sought to determine whether nitric oxide (NO) contributes to regulation of endothelial TF expression in the sickle mouse model. We used the NY1DD sickle mouse, which exhibits a low-TF to high-TF phenotype switch on exposure to hypoxia/reoxygenation. Manipulations of NO biology, such as breathing NO or addition of arginine or L-NAME (N-nitro-L-arginine-methyl-ester) to the diet, caused significant modulations of TF expression. This was also seen in hBERK1 sickle mice, which have a different genetic background and already have high-TF even at ambient air. Study of NY1DD animals bred to overexpress endothelial nitric oxide synthase (eNOS; eNOSTg) or to have an eNOS knockout state (one eNOS 2/2 animal and several eNOS 1/2 animals) demonstrated that eNOS modulates endothelial TF expression in vivo by down-regulating it. Thus, the biodeficiency of NO characteristic of patients with sickle cell anemia may heighten risk for activation of the coagulation system. Am. J. Hematol. 85:41-45, 2010. V
Nitric oxide (NO) is known to counteract apoptosis by S-nitrosylation of protein thiol groups. NO is generated and stored in erythrocytes, which may undergo eryptosis, a suicidal cell death similar to apoptosis of nucleated cells. Eryptosis is triggered by increased cytosolic Ca2+ activity and/or ceramide and characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. The present study explored whether nitric oxide could interfere with the machinery underlying eryptosis. To this end, erythrocyte phosphatidylserine exposure (annexin V-binding) and cell volume (forward scatter) were determined by flow cytometry. The Ca2+ ionophore ionomycin (0.1 microM) increased cytosolic Ca2+ activity, triggered annexin binding, and decreased forward scatter. The annexin binding and decrease of forward scatter but not the increase of cytosolic Ca2+ activity were reversed by the NO-donor nitroprusside (1 microM) and papanonoate (100 microM). Higher concentrations of nitroprusside (0.1 and 1 mM) stimulated eryptosis. Glucose depletion, exposure to C6-ceramide (3 microM), hypertonic (addition of 550 mM sucrose), and isotonic (replacement of Cl- with gluconate) cell shrinkage all triggered annexin V binding, effects all reversed by nitroprusside (1 microM). Dibutyryl-cGMP (1 mM) blunted the ionomycin- but not the ceramide-induced annexin V binding. Ionomycin decreased protein nitrosylation and thioredoxin activity, effects reversed by the NO-donor papanonoate. Clearance of erythrocytes from circulating blood was significantly faster in eNOS knockout mice than in their wild-type littermates. In conclusion, nitric oxide participates in the regulation of erythrocyte survival, an effect partially mimicked by cGMP and paralleled by alterations of protein nitrosylation and thioredoxin activity.
Structural, chemical, and mutational studies have shown that C-terminal cysteine residues on H-Ras could potentially be oxidized by nitrosylation. For investigating the effect of nitrosylation of Ras molecule on the adsorption of farnesylated H-Ras into lipid layer, experiments with optical waveguide lightmode spectroscopy were used. The analysis of association/dissociation kinetics to planar phospholipids under controlled hydrodynamic conditions has shown that preliminary treatment of protein by S-nitroso-cysteine decreased the adsorption of farnesylated H-Ras. The authors have found that compared with nitrosylated forms, farnesylated H-Ras has more compact configuration, because of the smaller area occupied by protein upon absorption at the membrane. The association rate coefficient for unmodified H-Ras was lower than similar parameter for farnesylated and nitrosylated forms. However, the desorbability, i.e., parameter, which reflects the rate of dissociation of protein from lipids is higher for farnesylated H-Ras. In addition, it was have found that farnesylation of cytoplasmic H-Ras, in contrast to membrane-derived forms, inhibits intrinsic GTPase activity of protein, and preliminary treatment of H-Ras by S-nitroso-cysteine restores the activity to the control level. These data suggest that nitrosylation of H-Ras rearranges the adsorptive potential and intrinsic GTPase activity of H-Ras through modification of C-terminal cysteines of molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.