Avermectins administered to cattle for control of parasitic infections by injection or slow-release bolus are excreted in the faeces and have a variety of harmful effects upon Diptera and Coleoptera that develop in cow-pats: these effects are reviewed. Diptera Cyclorrhapha are severely affected, the extent of the response depending on the drug concentration in the dung. At high levels, larvae are killed or paralysed while at lower levels their metamorphosis is inhibited. At very low levels, adult emergence is reduced and a significant number of imagines show morphological abnormalities. These responses are induced by concentrations of avermectins well below levels occurring in faeces after routine treatment. Diptera Nematocera are less sensitive than Cyclorrhapha but larval and pupal development are affected at higher dose levels. Larval dung beetles and some immature adults cannot survive in the pats of recently dosed livestock. Mature adult beetles are more resistant, but contact with treated dung leads to impaired reproduction. Dung eliminated up to 5 weeks after cattle have been treated with a single injection or up to 14 days after topical dosing shows harmful activity against dung insects, and ivermectin-containing pats retain much of their toxicity after several weeks exposure on pastureland. The impact on dung insects is more pronounced and of longer duration when ivermectin is delivered daily at 40 (ig per kg cow by sustained-release bolus. Following topical or injection treatments, the rate of cow-pat degradation (measured by actual loss of biomass) is significantly delayed. When cattle are treated with a bolus delivering 40 mg ivermectin per kg cow per day, their dung remains intact on grassland for at least three months. The conclusions drawn from the various papers on these effects are compared and contrasted. In particular, attention is drawn to the general failure to recognize the importance of delayed reactions to non-lethal doses of avermectins, and to our lack of consideration of long-term consequences for cow-pat insects and the wider implications for ecology.