2+ sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca2+ . This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca 2+ sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown.Objective: To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca 2+ desensitization of VSM contractile apparatus.
Methods and Results: AMPK induced a slowly developing dilation at unchanged cytosolic Ca2+ levels in potassium chloride-constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein.