Phenylalanine ammonia lyase (PAL) plays a key role in phenylpropanoid metabolism, catalyzing the deamination of phenylalanine (Phe) to form transcinnamic acid. Inhibitors of PAL have been used to study the physiological role of the different compounds derived from trans-cinnamic acid, and to test theories about a trade-off between growth and defence in plants. In a previous study with birch (Betula pubescens Ehrh.) seedlings, the PAL inhibitor 2-aminoindane-2-phosphonic acid monohydrate (AIP) caused an accumulation of Phe and a strong decrease in the quantity of simple phenolics, soluble condensed tannins and growth, whereas flavonol glycosides were generally not affected. The present study demonstrates restoration of secondary metabolism in the previously AIP treated birch seedlings. Our results indicate that Phe accumulated during PAL inhibition could be partly used to increase the content of the phenolic acids, flavan-3-ols and to some extent the soluble condensed tannins. Seedling growth also increased when the supply of PAL inhibitor ceased. We thereby show that the inhibition of PAL by AIP in vivo is reversible, at least for moderate AIP concentrations and the rate of restoration is dependent on the inhibitor concentration.