Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context.
IntroductionThe cerebellum has long been regarded as a purely sensorimotorrelated structure, crucial for the precise temporal coordination of body, limb, and eye movements and the learning and fine-tuning of motor skills. Electrophysiological investigations of the cerebellar cortical principal neurons, the Purkinje cells, and their postsynaptic targets, the neurons in the cerebellar nuclei (CN) and vestibular nuclei, revealed strong representations of a wide variety of sensory and motor events (Ito, 1984; Strata, 1989) in the presence of high sustained spike rates (Thach, 1972).Extracellular single-unit recordings, particularly those conducted in awake and behaving nonhuman primates, have established that Purkinje cell simple spike rates represent a variety of variables related to the control of eye, head, and limb movements. Encoded variables include the direction of limb movements (e.g., Harvey et al., 1977; Thach, 1978; Fortier et al., 1989; Smith et al., 1993) and limb movement velocity or speed (Coltz et al., 1999; Roitman et al., 2005). Studies of arm movement dynamics provided evidence that Purkinje cell simple spike activity represents both forward prediction and feedback error-related signals, consistent with an involvement of the cerebellum in the prediction of expected sensorimotor states and the detection and correction of motor errors ; for a recent review, see Ebner et