Oxidative damage to DNA has many origins, including irradiation,
inflammation, and oxidative stress, but the chemistries are not the
same. The most oxidizable base in DNA is 2-deoxyguanosine (dG), and
the primary oxidation products are 8-oxodG and 2-amino-imidazolone.
The latter rapidly converts to 2,2-diamino-oxazolone (Ox), and 8-oxodG
is further oxidized to spiroiminodihydantoin (Sp) and guanidinohydantoin
(Gh). In this study, we have examined the dose–response relationship
for the formation of the above four products arising in calf thymus
DNA exposed to gamma irradiation, photoactivated rose bengal, and
two sources of peroxynitrite. In order to carry out these experiments,
we developed a chromatographic system and synthesized isotopomeric
internal standards to enable accurate and precise analysis based upon
selected reaction monitoring mass spectrometry. 8-OxodG was the most
abundant products in all cases, but its accumulation was highly dependent
on the nature of the oxidizing agent and the subsequent conversion
to Sp and Gh. Among the other oxidation products, Ox was the most
abundant, and Sp was formed in significantly greater yield than Gh.