The control of soilborne crop pathogens is conditioned by the limited management options due to difficult access to active infection courts and to restrictions in the use of synthetic pesticides in Europe. For most soilborne sunflower pathogens, an effective management relies on genetic resistance which is, however, hindered by new pathogen populations (new races). Special emphasis is thus put on updated monitoring and characterization of pathogens and on the enlargement of the set of tools for disease management. Concerning characterization, advances on the population structure of Verticillium dahliae affecting sunflower by means of genetic, molecular and pathogenic approaches are presented. Also in relation to increases of sunflower wilt diseases recently observed, the fungus Cadophora malorum has been identified in Russia and reported as a new pathogen of this crop. Third, new races of Plasmopara halstedii (sunflower downy mildew), have been identified in Spain and Portugal. Most of them have a high virulence, since they overcome several genes for resistance. With regard to alternatives for disease control, entomopathogenic fungi (EF) constitute a novel tool. Used for years in Integrated Pest Management strategies due to their efficacy in controlling insect pests affecting crops, new ecological roles of these fungi have recently been reported. The EF species Beauveria bassiana and Metarhizium brunneum have been assessed by their in vitro effect against V. dahliae and C. malorum by our research group. Our results suggest that antibiosis and/or competition for ecological niche are operating in some EF-pathogen interactions. In summary, pathogen characterization is essential for genetic resistance for worldwide environments of sunflower production. Moreover, the security of sunflower yield and profitability is dependent not only on effective genetic resistance, but also on additional new control options that can be included in successful strategies of sunflower disease management.