Introduction
We have previously demonstrated that TGF-β in the presence of elevated levels of its primary signaling protein, Smad3, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. Moreover, we have shown that the mechanism in part, is through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluate the role of the ERK mitogen-activated protein kinase (ERK MAPK) in TGF-β-induced VSMC proliferation.
Methods
Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with ansiRNA. For in vivo experiments, Male Sprague-Dawley rats underwent carotid balloon injury followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK and Proliferating Cell Nuclear Antigen (PCNA).
Results
In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time and concentration-dependent manner. Overexpression of the signaling protein, Smad3 enhanced TGF-β-induced activation of ERK MAPK whereas inhibition of Smad3 with ansiRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by PCNA.
Conclusion
Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that through a Smad3/ERK MAPK signaling pathway, TGF-β enhances VSMC proliferation. These findings explain at least in part, the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.