Regucalcin plays a multifunctional role in the regulation of cellular function including metabolism, signaling process and transcriptional activity in maintaining cell homeostasis. Downregulated expression or activity of regucalcin contributes to the development of malignancies in various types of human cancer. Survival of cancer patients, including metastatic prostate cancer, is prolonged with high expression of regucalcin in the tumor tissues. Furthermore, we elucidate whether extracellular regucalcin conquers the growth, migration, invasion and adhesion of metastatic human prostate cancer PC-3 and DU-145 cells. Extracellular regucalcin (0.1, 1, and 10 nM) of physiologic levels inhibited colony formation and growth of PC-3 and DU-145 cells, while it did not have an effect on cell death. Repressive effects of extracellular regucalcin on the proliferation were not exhibited by the presence of inhibitors of cell cycle, intracellular signaling process and transcriptional activity, suggesting that the signals of extracellular regucalcin are transmitted to block cell growth. Furthermore, extracellular regucalcin (0.1, 1, or 10 nM) inhibited migration, invasion and adhesion of PC-3 and DU-145 cells. Mechanistically, extracellular regucalcin (10 nM) decreased the levels of various signaling proteins including Ras, hosphatidylinositol-3 kinase, mitogen-activated protein kinase, mTOR, RSK-2, caveolin-1 and integrin β1 in PC-3 cells. Thus, extracellular regucalcin may play a suppressive role in growth, migration, invasion and adhesion, which are involved in metastatic activity of human prostate cancer cells, via affecting diverse signaling processes. This study may provide a new strategy in preventing metastatic prostate cancer with exogenous regucalcin.