We investigate the nonlinear dynamics of the Peyrard-Bishop DNA model taking into account site dependent inhomogeneities. By means of the multiple-scale expansion in the semi-discrete approximation, the dynamics is governed by the perturbed nonlinear Schrödinger equation. We carry out a multiple-scale soliton perturbation analysis to find the effects of the variety of nonlinear inhomogeneities on the breatherlike soliton solution. During the crossing of the inhomogeneities, the coherent structure of the soliton is found stable. The global shape of the inhomogeneous molecule is merged with the shape of the homogeneous molecule. However, the velocity, the wavenumber and the angular frequency undergo a time-dependent correction that is proportional to initial width of the soliton and depends on the nature of the inhomogeneities.