Найдено новое точное решение двумерных уравнений Обербека-Буссинеска. Полученные аналитические выражения гидродинамических полей описывают конвективное течение Куэтта. Течение жидкости возникает при неоднородном распределении скоростей и квадратичного источника тепла на верхней границе бесконечного слоя вязкой несжимаемой жидкости. Для нахождения точного решения уравнений Обербека-Буссинеска введено два характерных масштаба. Использование анизотропного слоя позволяет исследовать крупномасштабные течения жидкостей при больших значениях чисел Грасгофа. Показана связь решений, описывающих квадратичный нагрев границ, с краевыми задачами, позволяющими изучать движения жидкостей, в которых температура распределена по линейному закону. Приведен анализ полиномиальных решений, описывающих естественную конвекцию жидкости. Показано существование точек, в которых гидродинамические поля обращаются в нуль внутри слоя жидкости. Таким образом, приведенный класс точных решений позволяет описать противотечения в жидкости и расслоения полей давления и температуры. Ключевые слова: течение Куэтта, линейный нагрев, квадратичный нагрев, конвекция, точное решение, полиномиальное решение Получено 22 июня 2015 года После доработки 14 мая 2016 года Работа выполнена при поддержке ФСР МФП НТС (программа СТАРТ) и ИВФ РТ (программа СТАРТ).