Purpose
A reliable and safe operation of fuel cells (FCs) is imperative for their application in aviation, especially within the main powertrain. Moreover, performance and lifetime requirements for technical and economic viability are demanding compared to their stationary or road transportation counterparts, while the operating conditions are considered challenging. Prognostics and health management (PHM) could represent a powerful tool for enhancing reliability, durability and performance by detecting, predicting and/or mitigating relevant degradation and failure mechanisms. Against this backdrop, the authors consider it of high relevance to obtain an understanding of the effectiveness of PHM approaches for polymer electrolyte fuel cells (PEFCs) for future aircraft applications, which represents the aim of this paper.
Design/methodology/approach
In this study, the authors first discuss application relevant failure modes, review state-of-the-art PHM approaches and, consecutively, assess the potential of FC control strategies for aviation. Aiming for a tangible, comparable metric for this initial assessment, the authors apply a published remaining useful life prediction method to load profiles for a range of aviation-specific applications.
Findings
The authors’ analysis shows significant potentials for lifetime improvement by (partial) avoidance of high power operation and rapid load change through control strategies. Tapping into these theoretical potentials, however, requires significant developments in the field of PEFC PHM and a focus on aviation specific degradation and performance testing.
Originality/value
The novelty of this study lies in creating an understanding of the potential of avoiding or preventing certain degradation modes by means of PHM in the PEFC specifically in aviation applications.