The important role of nitrogen (N) in limiting or enhancing vegetation productivity is relatively well understood, although the interaction of N with other environmental variables in natural and agricultural ecosystems needs more study. In 2001, a suite of optical, fluorescence, and biophysical measurements were collected on leaves of corn (Zea Mays L.) from field plots provided four N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. Two complementary sets of high-resolution (< 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces. The first was comprised of leaf optical properties (350-2500 nm) for reflectance, transmittance, and absorptance. The second was comprised of reflectance spectra (500-1000 nm) acquired with and without a long pass 665 nm filter to determine the fluorescence contribution to "apparent reflectance" in the 670-750 nm spectrum that includes the 685 and 740 nm chlorophyll fluorescence (ChlF) peaks. Two types of fluorescence measurements were also made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broadband irradiance excitation; and 2) emission spectra at 5 nm resolution produced by three excitation wavelengths (280, 380, and 532 nm). The strongest relationships between optical properties and foliar chemistry were obtained for a "red-edge" optical parameter versus C/N and chlorophyll b. Select optical indices and ChlF parameters were correlated. A significant contribution of steady-state ChlF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2-6% at 740 nm over the range of N treatments. From all measurements assessing fluorescence, higher ChlF was measured from the abaxial leaf surfaces.Keywords: high spectral resolution reflectance and fluorescence, chlorophyll fluorescence, carbon/nitrogen ratio, chlorophyll b, red edge, nitrogen deficiency and excess.