This paper presents the available technique and discusses the difficulties to implement intelligent robots in nextgeneration automobile assembly. First, it presents the status of automobile assembly line, analyzes the problems and difficulties of current industrial robots-based assembly systems, and summarizes the technology needed to overcome the problems and difficulties. Then, it presents the new technology for intelligent assembly developed at National Institute of Advanced Science and Technology (AIST), which can be directly used to implement intelligent robots for automobile assembly. Next, the paper analyzes the drawbacks of the newly developed technology and discusses remaining challenges, and presents our view of next-generation automobile assembly systems.
Using Intelligent Robots to Assemble Automobile PartsWeiwei Wan* National Institute of Advanced Industrial Science and Technology (AIST), Japan Keywords: Intelligent robots; Automobile assembly systems; Sensors;
Databases
States in Automobile Assembly LineIndustrial robots are widely used in automobile assembly lines. These robots are called industrial robots since their goal is to follow some pre-taught paths or way points, which is essentially the same as automation machines. The tasks performed by these robots include welding, painting, pick-and-place in structured environment (e.g., glass installation, door installation, and nut/bolt fastening), etc.The tasks performed by industrial robots are exciting. On the other hand, there are lots of tasks remained to be done by human workers. These tasks include (1) picking parts from cluster, (2) reorienting parts to certain poses, and (3) force-based assembly. These tasks cannot be done using industrial robots and teach pendants since: (1) The parts shapes and physical properties are varying. It is difficult to manually specify the grasping strategies for infinite number of parts. (2) The initial poses and goal poses of manipulated parts are changing. It is difficult to teach the robots all motions to reorient different parts. (3) The first two processes lead to variety in force control and assembly, which also make pre-teaching difficult.One advisable way to automate the remaining tasks is to develop intelligent robots. The fundamental technique includes (1) computer vision for object recognition, (2) object analyzer for grasp planning, (3) motion planning, (4) force analysis and assembly planning, and (5) machine learning.
Development of Intelligent Robots for Assembly at AISTThe manipulation group at National Institute of Advanced Industrial Science and Technology (AIST), Japan, is developing intelligent robots to assembly objects. Over the years, we have developed software for all fundamental technique.(1) We developed object recognition technique by using point clouds collected from structure light-based depth sensors. The developed platform has high precision as it uses point clouds and geometric constraints in the robot execution phase to avoid unexpected noises [1]. We also developed mult...