The use of biodegradable dielectric liquids in power transformers has several advantages, such as increased fire safety or their biodegradability in the event of a leak in the tank. However, they also have a higher viscosity that does not benefit their cooling function within these machines. Although there are many references that analyze the transformers hotspot temperature for dynamic loading, there are hardly any references that focus on the dynamic evaluation of the hot-spot when the viscosity of the dielectric and cooling fluid changes, with respect to that of the oil of mineral origin. In this work, the algorithms proposed in the bibliography will be combined with the use of computational fluid dynamics software ANSYS-FLUENT, which uses the finite volumes method to solve the equations that govern fluid flow. The software tool will be used to calculate the temperatures of a 100MVA transformer winding. Once these temperatures have been calculated, they can be entered into the hot-spot temperature estimation algorithm when the machine's load regime is varied. This analysis will be repeated using dielectric liquids with different thermal characteristics. Transformer fleet managers may use the results of this study in order to adapt their procedures when the machines they manage do not have conventional mineral oil inside.