The advent and widespread adoption of pedicle screw instrumentation prompted the need for image guidance in spine surgery to improve accuracy and safety. Although the conventional method, fluoroscopy, is readily available and inexpensive, concerns regarding radiation exposure and the drive to provide better visual guidance spurred the development of computer-assisted navigation.Contemporaneously, a non-navigated robotic guidance platform was also introduced as a competing modality for pedicle screw placement. Although the robot could provide high precision trajectory guidance by restricting four of the six degrees of freedom (DOF), the lack of real-time depth control and high capital acquisition cost diminished its popularity, while computer-assisted navigation platforms became increasingly sophisticated and accepted. The recent integration of real-time 3D navigation with robotic platforms has resulted in a resurgence of interest in robotics in spine surgery with the recent introduction of numerous navigated robotic platforms. The currently available navigated robotic spine surgery platforms include the