“…Although the occurrence of a "metal-dielectric transition" in PbSnTe:In at temperatures 20 TK ≤ presents a widely recognized fact, manifested as Fermilevel pinning at the middle of the energy gap of PbSnTe:In and resulting in a low (almost intrinsic) concentration of charge carriers in the material, available literature tacitly assumes that in dielectric state no contact injection occurs in PbSnTe samples, and only equilibrium charge carriers define the charge transport in the material. Yet, it was firmly established in (Akimov et al, 2005) that at helium temperatures in electric fields stronger than about 100 V/cm PbSnTe:In samples become dominated by space-charge-limited injection currents in the presence of electron traps, with the temperature dependence of the current showing a good agreement with calculations performed by the theory of space-charge-limited currents on the assumption of temperature-dependent static dielectric permittivity of the material. It was found that the behavior of static dielectric permittivity as a function of temperature depends on the strength of an electric field superimposed onto the sample, this fact complicating the description of the current versus voltage and temperature (Klimov & Shumsky, 2003).…”