Abstract. In this paper we examine matrices which arise naturally as Jacobians in chemical dynamics. We are particularly interested in when these Jacobians are P matrices (up to a sign change), ensuring certain bounds on their eigenvalues, precluding certain behaviour such as multiple equilibria, and sometimes implying stability. We first explore reaction systems and derive results which provide a deep connection between system structure and the P matrix property. We then examine a class of systems consisting of reactions coupled to an external rate-dependent negative feedback process, and characterise conditions which ensure the P matrix property survives the negative feedback. The techniques presented are applied to examples published in the mathematical and biological literature.